智慧教室:
智慧教室是一种典型的智慧学习环境的物化,是多媒体和网络教室的高端形态,它是借助物联网技术、云计算技术和智能技术等构建起来的新型教室,该新型教室包括有形的物理空间和无形的数字空间,通过各类智能装备辅助教学内容呈现、便利学习资源获取、促进课堂交互开展,实现情境感知和环境管理功能的新型教室。智慧教室旨在为教学活动提供人性化、智能化的互动空间;通过物理空间与数字空间的结合,本地与远程的结合,改善人与学习环境的关系,在学习空间实现人与环境的自然交互,促进个性化学习、开放式学习和泛在学习。
发展历程:
从某种程度上讲,当前多媒体教室的困境与教室环境的设计和技术装备存在密切关系;重构教室环境,创建适合学生学习和教师教学的新型教室环境,是一种必然趋势。随着智慧地球、智慧城市等概念的提出和相关技术的蓬勃发展,充分利用传感技术、物联网技术、人工智能技术、多媒体技术、云计算技术等来装备教室和改善学习环境及建设智慧型教室成为必然的选择。
电子教室主要是指随着电子技术的发展,电子设备及电子音像制品装备应用到传统教室中所产生的教室形态。多媒体教室主要是指随着多媒体计算机技术的发展,多媒体计算机技术应用到教育领域中所产生的教室形态。数字教室则是数字革命深入教育领域,多种数字设备和工具应用到教室中所产生的教室形态。当信息的采集、存储和传播由模拟信号转化为数字信号时,应用这些数字设备和工具的教室便成为数字教室。智慧教室则是数字教室的一种更高级的形式。
总之,教室的发展经历了“传统教室——电子教室——多媒体教室——多媒体网络教室——智慧教室”的过程,而多媒体教室、多媒体网络教室和智慧教室同属于数字教室的不同发展阶段。
2021年06月,由中国联通承建的国家开放大学首批5G智慧教室正式投入使用,将5G、AI、大数据等新一代数字技术带入课堂,充满视觉冲击力的巨幅纳米黑板、5G+4K远程互动、智能辅助教学、翻转课堂等一系列高科技教学体验,令师生们仿佛置身于未来校园。
作用:
智慧教室设备能够体现物联网的三个层次(应用层、网络层、感知层),运用传感器、射频识别(RFID)等技术,使信息传感设备实时感知任何需要的信息,按照约定的协议,通过可能的网络(如基于WiFi的无线局域网、移动通信、电信网等)接入方式,把任何物品与互联网相连接,进行信息交换和通信,实现物与物、物与人的泛在链接,实现对物品的智慧化识别、跟踪、监控和管理。同时,智慧教室还能满足开设物联网导论、传感器原理及应用、无线传感器网络及应用、RFID技术及应用、物联网工程及应用、物联网标准与中间件技术、物联网应用系统设计等课程的实践实训教学需要,并为学生或教师的物联网技术应用项目开发提供平台。
通过智慧教室实验平台,学生能掌握物联网技术基础理论、物理信息系统标识与感知、计算机网络理论与技术以及数据分析与信息处理技术等知识,具备通信技术、网络技术、传感技术等信息领域宽广专业知识,具备一定的工程应用系统的开发能力、实践能力和科学研究能力。
智慧教室建设可以用光载无线交换机构建WiFi无线局域网,覆盖智慧教室,加上教室的有线网络交换机、网络路由器,从而建立融合有线网络、无线局域网的物联网关键部分——网络层,各种传感器件通过标准模块WiFi设备服务器(串口通信RS232转WiFi无线网络)无线接入物联网工程信息平台,构成涵盖物联网三个层次的统一的物联网工程实验平台。同时,其他内置Wifi模块的各种手持设备(笔记本电脑、手机等)也能无线接入该实验平台,成为物联网实验设备的一部分;师生教学、科研实践开发的其他感知模块,通过与标准的WiFi设备服务器连接,也能轻易接入该实验平台,完成测试、验证。智慧教室基于物联网技术,可以搭建成一个物联网应用场景,既可以用于学生进行创新实验研究,也方便教师开展科学研究。可以通过智慧教室里面的人员考勤系统来判断教室内是否有人员,如果教室内无人,则教室内所有系统处于关闭状态;反之,则处于工作状态。
特征:
基于数据的教学
传统课堂主要依靠教师的个人教学经验对课堂上学生的学习行为进行判断和制定教学决策,智慧教室根据学生学习行为大数据挖掘与分析来调整教学策略,用直观的数据了解学生对知识掌握的水平,在课堂教学中实现了基于证据的教育新形态。
高效的教学
利用现代信息技术打造智慧学习环境,用大数据构建高效课堂,大大提高了课堂教学效率。如通过情境感知、数据挖掘等方法可以提前预知学习者潜在的学习需求,在智慧教室中学习者通过资源订阅和智能推送的方式及时获取新的学习资源,实现了教与学的立体沟通与交流。
个性化学习
通过课前预习测评分析和课中随堂测验即时分析,准确把握每个学习者掌握知识的状况,实现对学生的个性化学习能力的评估,使老师对每一位学生的认知度更清晰,有针对性地制定教学方案和辅导策略,推送个性化的学习资料,制作针对个人的“微课”,实现以学生为中心的“一对一”的个性化教学服务。
合作探究的学习方式
依据知识构建的需要,智慧教室中采取小组协商讨论、合作探究的学习方式,协作群组服务能够帮助有相同学习需求和兴趣的学习者自动形成学习共同体,就某个问题开展深入的互动交流,有利于实现对所学知识的意义建构。
动态开放的课堂
“动态生成”是新课标提倡的一个重要理念。课堂本质上是一个动态开放的系统,随着互联网、移动互联等新兴信息技术在课堂教学中的应用,课堂系统超越了时空限制。智慧教室不是忠实地、封闭地传递和接受知识,而是鼓励课堂创新与开放,鼓励生成,积极为学生激发创新、发展智慧提供有利条件。
教学机智的课堂
课堂教学是千变万化的,再好的预设方案也不能预见课堂上可能出现的所有情况。智慧教室要求教师要有随机应变的能力,根据教学进程中出现的新情况,基于动态学习数据分析和即时反馈,采取机智性行动,及时调整课前的教学设计,优化和改进课堂教学进程。
组成:
智慧教室主要包括以下九个系统:
教学系统
教学系统由内置电子白板功能的触控投影机一体机、功放、音箱、无线麦克、拾音器、问答器和配套控制软件构成。使用内置电子白板功能的触控投影机代替传统的黑板教学,实现无尘教学,保障师生的健康;可在投影画面上可以操作电脑,在每个桌位上配置问答器,实现师生交互式课堂教学。
LED显示系统
LED显示系统由LED面板拼接而成,安装在教室黑板顶部,用于显示正在上课的课程名称、专业班级、任课教师、到课率和教室内各传感器采集的环境数据(室内温湿度、光照度、二氧化碳浓度等)。
人员考勤系统
人员考勤系统由RFID考勤机、考勤卡和配套控制软件构成。在教室前后门各安装一个RFID考勤机,采用RFID标签(校园一卡通)对学生进行考勤统计,对进人教室的人员进行身份识别,对合法用户进行考勤统计,对非法用户进行告警。同时可通过WiFi无线覆盖,在远程对考勤情况进行监控、统计以及存档打印等。
资产管理系统
资产管理系统由特高频RFID读卡器、纸质标签、抗金属标签和配套控制软件构成。在教室前后门各安装一个特高频读卡器,对教室内的实验仪器、设备等资产(贴有RFID标签,标签上存储有设备的详细信息)出入教室进行监控与管理,对未授权用户把教室内资产带出教室进行告警,方便设备管理人员对教室设备的统一管理。
灯光控制系统
灯光控制系统由灯光控制器、光照传感器、人体传感器、窗帘控制系统和配套控制软件构成。首先通过人体传感器来判断教室内对应位置是否有人,此位置无人,则灯光控制系统及窗帘控制系统处于关闭状态;反之,处于工作状态。
空调控制系统
空调控制系统由中央空调电源控制器、温湿度传感器和配套控制软件构成。通过温湿度传感器监测室内温度,通过分析数据,根据软件预设值,当室内温湿度高于最高门限值时自动开启空调,当室内温湿度低于最低门限值时自动关闭空调,实现室内温湿度的自动控制。
门窗监视系统
门窗监视系统由窗户门磁模块及配套软件组成。窗户门磁模块用于检测门和窗户的开关状态,并将状态信息及时上传至服务器。同时设置敏感时段,实施对窗户的自动监视和报警。
通风换气系统
通风换气系统由抽风机、CO2传感器和配套监控软件构成。通过CO2传感器监测室内的CO2浓度,通过分析数据,根据软件预设值,当室内CO2浓度高于软件门限值时自动开启抽风机来进行换气,通过补充室外空气来降低室内的CO2浓度。
视视频监控系统
视频监控系统由WiFi无线摄像头和配套监控软件构成。视频监控可为安防系统、资产出入库、人员出入情况提供查询依据。在教室前后门口各安装一个WiFi无线摄像头监控人员出入和资产的出入库情况,在教室内安装一个WiFi无线摄像头监控教室内部实时情况,所采集的影像经由远端射频单元传送至终端管理电脑,提供实时的监控数据。
News
智能会议系统的稳定运行需通过系统性检查保障。以下从硬件、软件、环境、安全四大维度,梳理武汉智能会议系统维修时应着重关注的检查项,确保会议顺畅。硬件检查需聚焦核心设备状态。投影仪应定期检测灯泡寿命(剩余不足100小时需预警)、镜头清洁度及散热风扇运行情况,避免画面模糊或过热保护;麦克风需测试电池电量、接口连接稳定性及声音清晰度,排除啸叫问题;音响系统需验证音量调节范围、音频输入输出接口及功放状态,确保无杂音或失真。摄像头检查则需确认自动追踪功能灵敏度、镜头清洁度及画面同步效果,保障远程会议画面流畅。软件与网络检查需覆盖系统全链路。系统软件需保持最新版本,定期更新以修复漏洞并兼容新设备;会议软件应测试屏幕共享、录制、远程协作等功能模块,确保操作无卡顿;网络配置需验证带宽稳定性(丢包率低于5%)、防火墙端口开放情况及VPN加密传输效果,保障数据传输安全;权限设置需核对用户角色分配,避免越权操作。环境与安全检查...
在多人参与的会议场景中,话筒切换时的声音中断问题常让人头疼。其实只要掌握正确的武汉会议话筒设备操作逻辑和设备管理方法,就能让发言过渡如行云流水,避免尴尬的“静默时刻”。设备选型是基础。若使用有线话筒,需提前规划好线缆走向,避免发言人走动时拉扯线路导致信号中断。无线话筒则需关注频段分配,建议为每位发言人分配固定频段,避免临时切换时因频段冲突产生杂音。例如,在10人会议中,可选用支持多频段的无线系统,提前为每个座位绑定专属频段,切换时直接通过控制台切换信号源,无需重新配对。切换流程需注重“预演”与“缓冲”。正式会议前应进行全流程测试,模拟不同发言顺序下的切换效果。实际切换时,可设置“过渡区间”——当前一位发言人即将结束时,后一位发言人提前拿起话筒,待前一人话音落下瞬间轻触开关,利用设备信号延迟的微小间隙完成无缝衔接。若使用数字混音器,还可通过“自动跟随”功能,根据发言人位置自动切换主声道信号,减少人为操...
在商业展示、户外广告以及会议室等场景中,武汉大屏幕显示屏的应用越来越广泛。然而,随着使用频率的增加,功耗问题逐渐成为用户关注的焦点。LED节能型显示屏与传统型号在能耗表现上存在显著差异,长期使用成本也大不相同。本文将从功耗、使用寿命以及综合成本等方面,分析两种技术的实际表现,帮助用户做出更合理的选择。功耗表现差异LED节能型显示屏的核心优势在于其发光效率更高。与传统CCFL或DLP背光技术相比,LED采用直接发光方式,减少了能量转换的损耗。以一块100英寸的显示屏为例,传统型号的功耗可能达到800瓦以上,而同等尺寸的LED节能型产品通常控制在400瓦左右,部分高性能型号甚至更低。这种差异在长时间运行时会更加明显,尤其是在需要24小时开机的户外广告场景中,节能效果更为突出。使用寿命与维护成本除了直接的电费支出,显示屏的寿命也会影响整体使用成本。传统显示屏的背光组件(如CCFL灯管)通常在使用2万至3万小时后会出现明显衰减,亮...
在武汉智能会议大屏的众多功能中,“多屏互动”堪称团队协作的“神经中枢”。它通过技术手段打破单一屏幕的限制,让多设备、多用户的信息实现实时共享与协同操作。这种功能究竟如何实现?又能在哪些具体场景中发挥作用?技术实现:从“投屏”到“跨屏协同”多屏互动的核心是设备间的无缝连接与数据同步。以无线投屏为例,设备通过WiFi或蓝牙接入同一网络后,可快速将画面投射至会议大屏。部分系统支持“分屏显示”,例如同时展示PPT、数据图表和视频画面,满足多内容并行展示需求。更进阶的“触控交互”功能则允许用户直接在屏幕上书写、标注,甚至拖拽文件至其他设备。部分智能大屏还支持“反向控制”,即用手机或平板远程操作大屏内容,实现真正的双向互动。适用场景一:远程协作中的“面对面”体验在跨地区团队会议中,多屏互动能让异地成员“共处一室”。例如,上海团队可通过大屏实时共享设计稿,北京团队直接在屏幕上标注修改意见,同时广州团队同步展示市场数据。这种“你...
当音乐节的音浪在草坪上翻涌,当露天广场的演讲声试图穿透嘈杂,音响扩声设备看似轻松传递声音的背后,实则面临着重重挑战。不同于封闭的室内空间,户外场景的开阔性、多变性,让武汉音响扩声需要应对更多复杂状况。在户外使用音响扩声,究竟要克服哪些特殊难题?首先,声音在户外的传播特性与室内截然不同。室内空间有墙壁、顶棚等界面反射声音,能增强声音的响度和丰满度,而户外环境空旷,声音发出后直接向四面八方扩散,缺乏反射增强的条件,导致音量衰减更快。比如在公园举办的演出,后排观众听到的声音明显比前排微弱许多。此外,户外地形起伏也会影响声音传播,山坡、树木等障碍物会阻挡或散射声波,造成声场不均匀,部分区域声音模糊不清,甚至出现“无声区”。户外复杂的环境干扰也是音响扩声的一大阻碍。风声、车辆轰鸣、人群嘈杂声等背景噪音无处不在,这些噪音会轻易掩盖音响扩声的内容,降低声音的清晰度。特别是遇到大风天气,风声灌入话筒或音箱...
在医院数字化建设进程中,会议室扩声系统改造已成为提升远程医疗协作能力的关键环节。音频质量的优化不仅关系到会诊信息的准确传递,更直接影响跨区域医疗资源的整合效率。本文围绕武汉扩声系统改造这一核心需求,探讨如何通过技术升级构建稳定的远程会诊音频保障体系。远程会诊对音频系统的核心要求体现在清晰度与稳定性两方面。传统会议室扩声设备常因环境噪声、回声干扰等问题导致语音辨识度下降,尤其在多设备协同场景下容易出现信号延迟。改造需解决三大技术痛点:背景噪声、语音信号保真、多终端兼容性。通过部署自适应声学反馈技术,可动态调整麦克风灵敏度与扬声器输出,避免啸叫现象;采用AEC回声消除算法则能分离本地语音与远程信号,确保双向通话流畅性。设备选型需兼顾功能性与场景适配性。会议桌面阵列麦克风适合中小型会诊室,其360度拾音范围与波束成形技术可准确捕捉发言者语音;吊顶式麦克风阵列则更适用于大型会议室,通过分布式布局实现...